6

Spin One-Halft

6-1 Transforming amplitudes

In the last chapter, using a system of spin one as an example, we outlined
the general principles of quantum mechanics:

Any state y can be described in terms of a set of base states by giving
the amplitudes to be in each of the base states.

The amplitude to go from any state to another can, in general, be written
as a sum of products, each product being the amplitude to go into one
of the base states times the amplitude to go from that base state to the
final condition, with the sum including a term for each base state:

(lyy = 25 ([ ixi|9). ©.1)

The base states are orthogonal—the amplitude to be in one if you are
in the other is zero:

@1J)y = b (62)

The amplitude to get from one state to another directly is the complex
conjugate of the reverse:

X[ = Wix). (6.3)

We also discussed a little bit about the fact that there can be more than one
base for the states and that we can use Eq. (6.1) to convert from one base to
another. Suppose, for example, that we have the amplitudes (iS | ¢) to find the
state y in every one of the base states i of a base system S, but that we then decide
that we would prefer to describe the state in terms of another set of base states,
say the states j belonging to the base 7. In the general formula, Eq. (6.1), we
could substitute ;T for X and obtain this formula:

(1) = 2 (T 1iS)S| ). 64)

The amplitudes for the state () to be in the base states (iT) are related to the
amplitudes to be in the base states (iS) by the set of coefficients (jT | iS). If there
are N base states, there are N2 such coefficients. Such a set of coefficients is often
called the “transformation matrix to go from the S-representation to the T-represen-
tation.”” This looks rather formidable mathematically, but with a little renaming
we can see that it is really not so bad. If we call C; the amplitude that the state ¥
is in the base state iS—that is, C; = (iS|¢)—and call C; the corresponding
amplitudes for the base system T—that is, C; = (jT | ), then Eq. (6.4) can be
written as

C; = > R;iCy, (6.5)
where R;; means the same thing as (jT | iS). Each amplitude C; is equal to a sum

t This chapter is a rather long and abstract side tour, and it does not introduce any
idea which we will not also come to by a different route in later chapters. You can,
therefore, skip over it, and come back later if you are interested.
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over all i of one of the coefficients R;; times each amplitude C;. It has the same
form as the transformation of a vector from one coordinate system to another.

In order to avoid being too abstract for too long, we have given you some
examples of these coefficients for the spin-one case, so you can see how to use
them in practice. On the other hand, there is a very beautiful thing in quantum
mechanics—that from the sheer fact that there are three states and from the
symmetry properties of space under rotations, these coefficients can be found
purely by abstract reasoning. Showing you such arguments at this early stage has
a disadvantage in that you are immersed in another set of abstractions before we
get “down to earth.” However, the thing is so beautiful that we are going to do
it anyway.

We will show you in this chapter how the transformation coefficients can be
derived for spin one-half particles. We pick this case, rather than spin one, because
it is somewhat easier. Our problem is to determine the coefficients R;; for a
particle—an atomic system—which is split into two beams in a Stern-Gerlach
apparatus. We are going to derive all the coefficients for the transformation from
one representation to another by pure reasoning—plus a few assumptions. Some
assumptions are always necessary in order to use “pure” reasoning! Although
the arguments will be abstract and somewhat involved, the result we get will be
relatively simple to state and easy to understand—and the result is the most
important thing. You may, if you wish, consider this as a sort of cultural excursion.
We have, in fact, arranged that all the essential results derived here are also
derived in some other way when they are needed in later chapters. So you need
have no fear of losing the thread of our study of quantum mechanics if you omit
this chapter entirely, or study it at some later time. The excursion is “cultural”
in the sense that it is intended to show that the principles of quantum mechanics
are not only interesting, but are so deep that by adding only a few extra hypotheses
about the structure of space, we can deduce a great many properties of physical
systems. Also, it is important that we know where the different consequences of
quantum mechanics come from, because so long as our laws of physics are in-
complete—as we know they are—it is interesting to find out whether the places
where our theories fail to agree with experiment is where our logic is the best or
where our logic is the worst. Until now, it appears that where our logic is the most
abstract it always gives correct results—it agrees with experiment. Only when we
try to make specific models of the internal machinery of the fundamental particles
and their interactions are we unable to find a theory that agrees with experiment.
The theory then that we are about to describe agrees with experiment wherever
it has been tested—for the strange particles as well as for electrons, protons,
and so on.

One remark on an annoying, but interesting, point before we proceed: It is
not possible to determine the coefficients R;; uniquely, because there is always
some arbitrariness in the probability amplitudes. If you have a set of amplitudes
of any kind, say the amplitudes to arrive at some place by a whole lot of different
routes, and if you multiply every single amplitude by the same phase factor—
say by e®—you have another set that is just as good. So, it is always possible to
make an arbitrary change in phase of all the amplitudes in any given problem if
you want to.

Suppose you calculate some probability by writing a sum of several amplitudes,
say (4 + B 4 C + ---) and taking the absolute square. Then somebody else
calculates the same thing by using the sum of the amplitudes (4’ + B’ + C’ +
-+ +) and taking the absolute square. If all the 4’, B’, C’, etc., are equal to the
A, B, C, etc., except for a factor e, all probabilities obtained by taking the absolute
squares will be exactly the same, since (4’ + B’ + C’ + ---) is then equal to
e®(d + B+ C+ ). Or suppose, for instance, that we were computing
something with Eq. (6.1), but then we suddenly change all of the phases of a
certain base system. Every one of the amplitudes (i | ¢) would be multiplied by
the same factor e®. Similarly, the amplitudes (i | X) would also be changed by
e, but the amplitudes (X | /) are the complex conjugates of the amplitudes (i [ x);
therefore, the former gets changed by the factor e~®. The plus and minus i’
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in the exponents cancel out, and we would have the same expression we had
before. So it is a general rule that if we change all the amplitudes with respect
to a given base system by the same phase—or even if we just change a// the ampli-
tudes in any problem by the same phase—it makes no difference. There is, there-
fore, some freedom to choose the phases in our transformation matrix. Every now
and then we will make such an arbitrary choice—usually following the conventions
that are in general use.

6-2 Transforming to a rotated coordinate system

We consider again the “improved” Stern-Gerlach apparatus described in the
last chapter. A beam of spin one-half particles, entering at the left, would, in
general, be split into two beams, as shown schematically in Fig. 6-1. (There
were three beams for spin one.) As before, the beams are put back together again
unless one or the other of them is blocked off by a ‘“‘stop” which intercepts the
beam at its half-way point. In the figure we show an arrow which points in the
direction of the increase of the magnitude of the field—say toward the magnet pole
with the sharp edges. This arrow we take to represent the “up” axis of any particular
apparatus. Tt is fixed relative to the apparatus and will allow us to indicate the
relative orientations when we use several apparatuses together. We also assume
that the direction of the magnetic field in each magnet is always the same with
respect to the arrow.

We will say that those atoms which go in the ‘“upper” beam are in the (+)
state with respect to that apparatus and that those in the “lower” beam are in the
(—) state. (There is no “zero” state for spin one-half particles.)

Now suppose we put two of our modified Stern-Gerlach apparatuses in
sequence, as shown in Fig. 6-2(a). The first one, which we call S, can be used to
prepare a pure (4.S) or a pure (—S) state by blocking one beam or the other.
[As shown it prepares a pure (+S) state.] For each condition, there is some
amplitude for a particle that comes out of S to be in either the (7)) or the (—T)
beam of the second apparatus. There are, in fact, just four amplitudes: the ampli-
tude to go from (4S) to (47), from (4S) to (—T7), from (—S) to (+7), from
(—S) to (—T). These amplitudes are just the four coefficients of the transformation
matrix Rj; to go from the S-representation to the T-representation. We can con-
sider that the first apparatus “prepares” a particular state in one representation
and that the second apparatus “analyzes” that state in terms of the second repre-
sentation. The kind of question we want to answer, then, is this: If an atom has
been prepared in a given condition—say the (4 S) state—by blocking one of the
beams in the apparatus S, what is the chance that it will get through the second
apparatus T if this is set for, say, the (—T) state. The result will depend, of course,
on the angles between the two systems S and T.

We should explain why it is that we could have any hope of finding the co-
efficients R;; by deduction. You know that it is almost impossible to believe that
if a particle has its spin lined up in the +z-direction, that there is some chance of
finding the same particle with its spin pointing in the +x-direction—or in any
other direction at all. In fact, it is almost impossible, but not quite. 1t is so nearly
impossible that there is only one way it can be done, and that is the reason we can
find out what that unique way is.

The first kind of argument we can make is this. Suppose we have a setup like
the one in Fig. 6-2(a), in which we have the two apparatuses S and 7, with T
cocked at the angle o with respect to S, and we let only the (<) beam through $
and the (—) beam through 7. We would observe a certain number for the
probability that the particles coming out of S get through 7. Now suppose we
make another measurement with the apparatus of Fig. 6-2(b). The relutive
orientation of S and T is the same, but the whole system sits at a different angle in
space. We want to assume that both of these experiments give the same number
for the chance that a particle in a pure state with respect to S will get into some
particular state with respect to 7. We are assuming, in other words, that the result
of any experiment of this type is the same—that the physics is the same—no matter
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S

Fig. 6-3. If Tis “wide open,” (b) is equivalent to (a).

how the whole apparatus is oriented in space. (You say, “That’s obvious.” But
it is an assumption, and it is “right” only if it is actually what happens.) That
means that the coefficients R;; depend only on the relation in space of S and 7,
and not on the absolute situation of S and 7. To say this in another way, R;;
depends only on the rotation which carries S to 7, for evidently what is the same in
Fig. 6-2(a) and Fig. 6-2(b) is the three-dimensional rotation which would carry
apparatus S into the orientation of apparatus 7. When the transformation matrix
R;; depends only on a rotation, as it does here, it is called a roration matrix.

For our next step we will need one more piece of information. Suppose we
add a third apparatus which we can call U, which follows T at some arbitrary
angle, as in Fig. 6-3(a). (It’s beginning to look horrible, but that’s the fun of
abstract thinking—you can make the most weird experiments just by drawing
lines!) Now what is the S — T — U transformation? What we really want to
ask for is the amplitude to go from some state with respect to S to some other
state with respect to U, when we know the transformation from S to 7 and from T
to U. We are then asking about an experiment in which both channels of T are
open. We can get the answer by applying Eq. (6.5) twice in succession. For
going from the S-representation to the T-representation, we have

C; =3 RiPC, (6.6)

where we put the superscripts 7'S on the R, so that we can distinguish it from the
coefficients RY” we will have for going from T to U.

Assuming the amplitudes to be in the base states of the U-representation
Cy/, we can relate them to the T-amplitudes by using Eq. (6.5) once more; we get

Ci =Y RLCh 6.7)
J

Now we can combine Egs. (6.6) and (6.7) to get the transformation to U directly
from S. Substituting C/ from Eq. (6.6) in Eq. (6.7), we have

cy =3 RUTS RISc, (6.8)
7 7
7 [

Or, since i does not appear in Rj,", we can put the j-summation also in front, and

write
Ct =2 Y RRFC, (6.9)
T i)

This is the formula for a double transformation.

Notice, however, that so long as all the beams in T are unblocked, the state
coming out of T is the same as the one that went in. We could just as well have
made a transformation from the S-representation directly to the U-representa-
tion. It should be the same as putting the U apparatus right after S, as in Fig.
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6-3(b). In that case, we would have written

cr =3 RSCy (6.10)

with the coefficients RYS belonging to this transformation. Now, clearly, Egs.
(6.9) and (6.10) should give the same amplitudes C;’, and this should be true no
matter what the original state ¢ was which gave us the amplitudes C;. So it must
be that
RYP = > RUFRFS. (6.11)
i

In other words, for any rotation S — U of a reference base, which is viewed as a
compounding of two successive rotations S — T and T — U, the rotation matrix
RS can be obtained from the matrices of the two partial rotations by Eq. (6.11).
If you wish, you can find Eq. (6.11) directly from Eq. (6.1), for it is only a different
notation for (kU | iS) = >; kU | jT){T | iS).

To be thorough, we should add the following parenthetical remarks. They are not
terribly important, however, so you can skip to the next section if you want. What we
have said is not quite right. We cannot really say that Eq. (6.9) and Eq. (6.10) must
give exactly the same amplitudes. Only the physics should be the same; all the amplitudes
could be different by some common phase factor like e without changing the result of
any calculation about the real world. So, instead of Eq. (6.11), all we can say, really, is
that

e RYS = D RYFRES, (6.12)
7

where § is some real constant. What this extra factor of €% means, of course, is that the
amplitudes we get if we use the matrix RUS might all differ by the same phase (e~%) from
the amplitude we would get using the two rotations RUT and RTS. We know that it doesn’t
matter if all amplitudes are changed by the same phase, so we could just ignore this phase
factor if we wanted to. It turns out, however, that if we define all of our rotation matrices
in a particular way, this extra phase factor will never appear—the é in Eq. (6.12) will
always be zero. Although it is not important for the rest of our arguments, we can give a
quick proof by using a mathematical theorem about determinants. [If you don’t yet know
much about determinants, don’t worry about the proof and just skip to the definition of
Eq. (6.15).]

First, we should say that Eq. (6.11) is the mathematical definition of a “product”
of two matrices. (It is just convenient to be able to say: “RUS is the product of RV and
RT5.”) Second, there is a theorem of mathematics—which you can easily prove for the
two-by-two matrices we have here—which says that the determinant of a “product™ of
two matrices is the product of their determinants. Applying this theorem to Eq. (6.12),
we get

e'2% (Det RUS) = (Det RUT) - (Det RTS). 6.13)

(We leave off the subscripts, because they don’t tell us anything useful.) Yes, the 2§ is
right. Remember that we are dealing with two-by-two matrices; every term in the matrix
RV is multiplied by e, so each product in the determinant—which has rwo factors—gets
multiplied by e?2%. Now let’s take the square root of Eq. (6.13) and divide it into Eq.
(6.12); we get
RYS Z RYT RIS
v/Det RS 5~ \/Det RVT V/Det RTS

The extra phase factor has disappeared.

Now it turns out that if we want all of our amplitudes in any given representation
to be normalized (which means, you remember, that _; (¢|i){ilp) = 1), the rotation
matrices will all have determinants that are pure imaginary exponentials, like . (We
won’t prove it; you will see that it always comes out that way.) So we can, if we wish,
choose to make all our rotation matrices R have a unique phase by making Det R = 1.
It is done like this. Suppose we find a rotation matrix R in some arbitrary way. We make
it a rule to “convert” it to “standard form” by defining

R

Ratandarda = \/D ‘R ‘ (6.15)
€

6.14)
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We can do this because we are just multiplying each term of R by the same phase factor,
to get the phases we want. In what follows, we will always assume that our matrices have
been put in the “standard form”; then we can use Eq. (6.11) without having any extra
phase factors.

6-3 Rotations about the z-axis

We are now ready to find the transformation matrix R;; between two different
representations. With our rule for compounding rotations and our assumption
that space has no preferred direction, we have the keys we need for finding the
matrix of any arbitrary rotation. There is only one solution. We begin with the
transformation which corresponds to a rotation about the z-axis. Suppose we
have two apparatuses S and T placed in series along a straight line with their axes
parallel and pointing out of the page, as shown in Fig. 6-4(a). We take our “z-axis”
in this direction. Surely, if the beam goes “up” (toward +z) in the S apparatus,
it will do the same in the T apparatus. Similarly, if it goes down in S, it will go
down in T. Suppose, however, that the T apparatus were placed at some other
angle, but still with its axis parallel to the axis of S, as in Fig. 6-4(b). Intuitively,
you would say that a (+) beam in S would still go with a (4) beam in 7, because
the fields and field gradients are still in the same physical direction. And that
would be quite right. Also, a (—) beam in S would still go into a (—) beam in 7.
The same result would apply for any orientation of T in the xy-plane of S. What
does this tell us about the relation between C'y = (+T|y), C. = (—T|y) and
Cy = (+S|¢¥). C_ = (=S| ¢)? You might conclude that any rotation about
the z-axis of the “frame of reference” for base states leaves the amplitudes C, to
be “up™ and “down,” the same as before. We could write C/, = C,and C.. = C_
—but that is wrong. All we can conclude is that for such rotations the probabilities
to be in the “up” beam are the same for the S and T apparatuses. That is,

CH = €4 and  |CL| = |C_.

We cannot say that the phases of the amplitudes referred to the T apparatus may
not be different for the two different orientations in (a) and (b) of Fig. 6-4.

(b) I~

3
| I
o
I y,
FIELD GRADIENT x | ; 1
7/

Fig. 6—-4. Rotating 90° about the z-axis.

The two apparatuses in (a) and (b) of Fig. 6~4 are, in fact, different, as we
can see in the following way. Suppose that we put an apparatus in front of S which
produces a pure (+x) state. (The x-axis points toward the bottom of the figure.)
Such particles would be split into (+z) and (—z) beams in S, but the two beams
would be recombined to give a (+x) state again at P;—the exit of S. The same
thing happens again in 7. If we follow T by a third apparatus U, whose axis is in
the (4-x) direction and, as shown in Fig. 6-5(a), all the particles would go into
the (+) beam of U. Now imagine what happens if T and U are swung around
together by 90° to the positions shown in Fig. 6-5(b). Again, the T apparatus
puts out just what it takes in, so the particles that enter U are in a (4 x) state with
respect to S. But U now analyzes for the (- ) state with respect to S, which is
different. (By symmetry, we would now expect only one-half of the particles to
get through.)
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Fig. 6-5. Particle in a (4 x) state behaves differently in (a) and (b).

What could have changed? The apparatuses 7 and U are still in the same
physical relationship to each other. Can the physics be changed just because T
and U are in a different orientation? Our original assumption is that it should not.
It must be that the amplitudes with respect to T are different in the two cases shown
in Fig. 6-5—and, therefore, also in Fig. 6-4. There must be some way fora
particle to know that it has turned the corner at P;. How could it tell? Well, all
we have decided is that the magnitudes of C; and Cj, are the same in the two cases,
but they could—in fact, must—have different phases. We conclude that C/, and
C, must be related by

C, = e™Cy,

and that C”_ and C_ must be related by
C. = e™C_,

where N\ and u are real numbers which must be related in some way to the angle
between S and 7.

The only thing we can say at the moment about A and u is that they must not
be equal [except for the special case shown in Fig. 6-5(a), when T is in the same
orientation as S]. We have seen that equal phase changes in all amplitudes have
no physical consequence. For the same reason, we can always add the same
arbitrary amount to both X\ and u without changing anything. So we are permitted
to choose to make N and u equal to plus and minus the same number. That is, we
can always take

A
VRIS 3" NERPRI S 22}

Then

So we adopt the convention} that u = —\. We have then the general rule that
for a rotation of the reference apparatus by some angle about the z-axis, the trans-
formation is

Cy =etC,, C.=e"C_ (6.16)

The absolute values are the same, only the phases are different. These phase factors
are responsible for the different results in the two experiments of Fig. 6-5.

Now we would like to know the law that relates \ to the angle between S
and 7. We already know the answer for one case. If the angle is zero, X is zero.
Now we will assume that the phase shift X is a continuous function of angle ¢
between S and T (see Fig. 6-4) as ¢ goes to zero—as only seems reasonable. In

t Looking at it another way, we are just putting the transformation in the *“standard
form™ described in Section 6-2 by using Eq. (6.15).
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ther words, if we rotate T from the straight line through S by the small angle ¢, the
\ is also a small quantity, say me, where m is some number. We write it this way
because we can show that A must be proportional to €. Suppose we were to put
after 7" another apparatus 7”7 which makes the angle € with 7, and, therefore, the
angle 2e with S. Then, with respect to T, we have

C, = e™Cy,
and with respect to 77, we have
o= eCly = ey

But we know that we should get the same result if we put 7’ right after S. Thus,
when the angle is doubled, the phase is doubled. We can evidently extend the
argument and build up any rotation at all by a sequence of infinitesimal rotations.
We conclude that for any angle ¢, N is proportional to the angle. We can, therefore,
write N\ = mg.

The general result we get, then, is that for T rotated about the z-axis by the
angle ¢ with respect to S

C, = e™C,, C_=e¢"C 6.17)

For the angle ¢, and for all rotations we speak of in the future, we adopt the stand-
ard convention that a positive rotation is a right-handed rotation about the positive
direction of the reference axis. A positive ¢ has the sense of rotation of a right-
handed screw advancing in the positive z-direction.

Now we have to find what m must be. First, we might try this argument:
Suppose T is rotated by 360°; then, clearly, it is right back at zero degrees, and we
should have C). = C, and C_ = C_, or, what is the same thing, e™?" = 1.
We get m = 1. This argument is wrong! To see that it is, consider that T is rotated
by 180°. If m were equal to 1, we would have C/, = ¢"C, = —C, and C_ =
e~"C_ = —C_. However, this is just the original state all over again. Both
amplitudes are just multiplied by — 1 which gives back the original physical system.
(Itis again a case of a common phase change.) This means that if the angle between
T and S in Fig. 6-5(b) is increased to 180°, the system (with respect to T') would be
indistinguishable from the zero-degree situation, and the particles would again
go through the (+) state of the U apparatus. At 180°, though, the (4) state of
the U apparatus is the (—x) state of the original S apparatus. So a (+x) state
would become a (—x) state. But we have done nothing to change the original
state; the answer is wrong. We cannot have m = 1.

We must have the situation that a rotation by 360° and no smaller angle
reproduces the same physical state. This will happen if m = 3. Then, and only
then, will the first angle that reproduces the same physical state be ¢ = 360°.F
It gives

cy

—-Cy
360° about z-axis. (6.18)
C. = —C_

It is very curious to say that if you turn the apparatus 360° you get new amplitudes.
They aren’t really new, though, because the common change of sign doesn’t give
any different physics. If someone else had decided to change all the signs of the
amplitudes because he thought he had turned 360°, that’s all right; he gets the
same physics.} So our final answer is that if we know the amplitudes C and C_ for
spin one-half particles with respect to a reference frame S, and we then use a base

1 It appears that m = —% would also work. However, we see in (6.17) that the change
in sign merely redefines the notation for a spin-up particle.

1 Also, if something has been rotated by a sequence of small rotations whose net re-
sult is to return it to the original orientation, it is possible to define the idea that it has
been rotated 360°—as distinct from zero net rotation—if you have kept track of the
whole history. (Interestingly enough, this is nof true for a net rotation of 720°.)
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system referred to T which is obtained from S by a rotation of ¢ around the z-axis,
the new amplitudes are given in terms of the old by

c, = e®%c,
¢ about z. (6.19)
CL = e ®C_

6-4 Rotations of 180° and 90° about y

Next, we will try to guess the transformation for a rotation of T with respect
to S of 180° around an axis perpendicular to the z-axis—say, about the y-axis.
(We have defined the coordinate axes in Fig. 6-1.) In other words, we start with
two identical Stern-Gerlach equipments, with the second one, T, turned ‘“‘upside
down” with respect to the first one, S, as in Fig. 6-6. Now if we think of our par-
ticles as little magnetic dipoles, a particle that is the (4 S) state—so that it goes on
the “upper” path in the first apparatus—will also take the “upper” path in the
second, so that it will be in the minus state with respect to 7. (In the inverted
T apparatus, both the gradients and the field direction are reversed; for a particle
with its magnetic moment in a given direction, the force is unchanged.) Anyway,
what is “up” with respect to S will be “down”” with respect to 7. For these relative
positions of S and T, then, we know that the transformation must give

ICyl = |C|, |CL| = [C4l.

As before, we cannot rule out some additional phase factors; we could have (for
180° about the y-axis)

¢, =ePCc_ and C. = eC,, (6.20)

where 3 and 7 are still to be determined.

What about a rotation of 360° about the y-axis? Well, we already know the
answer for a rotation of 360° about the z-axis—the amplitude to be in any state
changes sign. A rotation of 360° around any axis always brings us back to the
original position. It must be that for any 360° rotation, the result is the same as
a 360° rotation about the z-axis—all amplitudes simply change sign. Now suppose
we imagine two successive rotations of 180° about y—using Eq. (6.20)—we should
get the result of Eq. (6.18). In other words,

CY = ePCL = ePe"Cy = —C

and 6.21)
C!’ = e"Cl = eVe®C_ = —C_.

This means that
e = —1 or e" = —e ¥

So the transformation for a rotation of 180° about the y-axis can be written
CL = e*c_, C_ = —e’iBC+. (6.22)

The arguments we have just used would apply equally well to a rotation of 180°
about any axis in the xy-plane, although different axes can, of course, give different
numbers for 8. However, that is the only way they can differ. Now there is a cer-
tain amount of arbitrariness in the number 3, but once it is specified for one axis
of rotation in the xy-plane it is determined for any other axis. It is conventional
to choose to set 3 = 0 for a 180° rotation about the y-axis.

To show that we have this choice, suppose we imagine that 3 was not equal
to zero for a rotation about the y-axis; then we can show that there is some other
axis in the xy-plane, for which the corresponding phase factor will be zero. Let’s
find the phase factor 84 for an axis 4 that makes the angle o with the y-axis, as
shown in Fig. 6-7(a). (For clarity, the figure is drawn with « equal to a negative
number, but that doesn’t matter.) Now if we take a T apparatus which is initially
lined up with the S apparatus and is then rotated 180° about the axis 4, its axes—
which we will call x”, y”/, and z’’—will be as shown in Fig 6-7(a). The amplitudes
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Fig. 6-6. A rotation of 180° about
the y-axis.
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Fig. 6-7. A 180° rotation about the
axis A is equivalent to a rotation of 180°
about y, followed by a rotation about z'.

with respect to T will then be

cy=ePic., L= —ePiC,. (6.23)

We can now think of getting to the same orientation by the two successive
rotations shown in (b) and (c) of the figure. First, we imagine an apparatus U
which is rotated with respect to S by 180° about the y-axis. The axes x’, y’, and 2’
of U will be as shown in Fig. 6-7(b), and the amplitudes with respect to U are
given by (6.22).

Now notice that we can go from U to T by a rotation about the “z-axis”
of U, namely about z’, as shown in Fig. 6-7(c). From the figure you can see that

the angle required is two times the angle o but in the opposite direction (with

respect to z’). Using the transformation of (6.19) with ¢ = —2a, we get
cyo=eC,, C!l=eTCL. (6.24)
Combining Egs. (6.24) and (6.22), we get that
L =e¥oc., = -0, (6.25)

These amplitudes must, of course, be the same as we got in 6.23). So B4 must
be related to « and 8 by

Ba=pB— a (6.26)
This means that if the angle « between the A-axis and the y-axis (of S) is equal to
B, the transformation for a rotation of 180° about 4 will have g4 = 0.

Now so long as some axis perpendicular to the z-axis is going to have 8 = 0,
we may as well take it to be the y-axis. It is purely a matter of convention, and we
adopt the one in general use. Our result: For a rotation of 180° about the y-axis,
we have

c,=C. }
180° about y. 6.27)
CcL

[

-Cy

While we are thinking about the y-axis, let’s next ask for the transformation
matrix for a rotation of 90° about y. We can find it because we know that two
successive 90° rotations about the same axis must equal one 180° rotation. We
start by writing the transformation for 90° in the most general form:

C, = aCy + bC_, CL = cCy + dC_. (6.28)

A second rotation of 90° about the same axis would have the same coefficients:

Cl = aCl + bCL, C" = cC + dC_. (6.29)
Combining Egs. (6.28) and (6.29), we have
CY = a(aCy + bC_) + b(cCy + dC_),
(6.30)
C"” = c(aCy + bC_) + d(cCy + dC_).
However, from (6.27) we know that
Ccl=C_, c’ = —Cy,,
so that we must have that
ab + bd = 1,
a? + be = 0, 6.31)
ac + cd = —1,
bc + d? = 0.

These four equations are enough to determine all our unknowns: 4, b, ¢, and d.
6-10




It is not hard to do. Look at the second and fourth equations. Deduce that
a? = d2, which means that a = d or else that a = —d. Buta = —d is out,
because then the first equation wouldn’t be right. So d = a. Using this, we have
immediately that » = 1/2a and that ¢ = —1/2a. Now we have everything in
terms of a. Putting, say, the second equation all in terms of a, we have

a —-—=20 or a’ = -

This equation has four different solutions, but only two of them give the standard
value for the determinant. We might as well take a = 1/4/2; thent

1/v2,
1/V2.

In other words, for two apparatuses S and 7, with T rotated with respect to
S by 90° about the y-axis, the transformation is

a=1/4/2, b
c=—1/2, d

i

1

CL = — (Cp+ C_
¥ \/Q( + )
90° about y. (6.32)
1
.= — (—-Cy+ C_
V2 (=C+ )

We can, of course, solve these equations for C and C_, which will give us
the transformation for a rotation of minus 90° about y. Changing the primes
around, we would conclude that

(Cy—C)

Sl

—90° about y. (6.33)

1

= — (C. + C_
V/i( + )

(o

6-5 Rotations about x

You may be thinking: “This is getting ridiculous. What are they going to
do next, 47° around y, then 33° about x, and so on, forever?” No, we are almost
finished. With just two of the transformations we have—90° about y, and an arbi-
trary angle about z (which we did first if you remember)—we can generate any
rotation at all.

As an illustration, suppose that we want the angle « around x. We know how
to deal with the angle o around z, but now we want it around x. How do we get
it? First, we turn the axis z down onto x—which is a rotation of +90° about y,
as shown in Fig. 6-8. Then we turn through the angle o around z’. Then we
rotate —90° about y”’. The net result of the three rotations is the same as turning
around x by the angle «. It is a property of space.

(These facts of the combinations of rotations, and what they produce, are hard
to grasp intuitively. It is rather strange, because we live in three dimensions, but
it is hard for us to appreciate what happens if we turn this way and then that way.
Perhaps, if we were fish or birds and had a real appreciation of what happens when
we turn somersaults in space, we could more easily appreciate such things.)

Anyway, let’s work out the transformation for a rotation by « around the
x-axis by using what we know. From the first rotation by +90° around y the
amplitudes go according to Eq. (6.32). Calling the rotated axes x’, ', and z’, the

+ The other solution changes all signs of «, b, ¢, and d and corresponds to a —270°
rotation.
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Fig. 6~8. A rotation by o about
the x-axis is equivalent to: (a) a rotation
by +90° about y, followed by (b) a
rotation by a about 2/, followed by (c) a
rotation of —90° about y'’.



next rotation by the angle « around z’ takes us to a frame x”, y”, z”’, for which
Cl = €™y,  Cr = eTC,
The last rotation of —90° about y” takes us to x'”’, y'”’, z’’’; by (6.33),

1

1
c o= (C" _ Cﬁ), Cc!" =
+ + - \/i

V2

Combining these last two transformations, we get

© + cn.

1
V2

1 . .
Ct = — (et™?CY 4 e~2CL),
V2

C{}/,, — (e+ia[2cq_ _ e—ia/ZCl_)’

Using Eqs. (6.32) for C/, and C’_, we get the complete transformation:
CY = Het™Cy + C) — e™(—Cy + CLY},
C = Het™HCy + C) + e7 ¥ —Cy + CL)}.
We can put these formulas in a simpler form by remembering that

e? 4+ e = 2cos9, and e* — ¢* = 2isin 6.

We get
cy = (cos %)c+ + i(sin g)c_
a about x. (6.34)
c = i(sin %)CJr + (cos %)C_

Here is our transformation for a rotation about the x-axis by any angle «. It is
only a little more complicated than the others.

6-6 Arbitrary rotations

Now we can see how to do any angle at all. First, notice that any relative
orientation of two coordinate frames can be described in terms of three angles, as
shown in Fig. 6-9. If we have a set of axes x’, )/, and 2’ oriented in any way at all
with respect to x, y, and z, we can describe the relationship between the two frames
by means of the three Euler angles a, 8, and v, which define three successive ro-
tations that will bring the x, y, z frame into the x’, y’, z’ frame. Starting at x, y, z,
we rotate our frame through the angle 8 about the z-axis, bringing the x-axis to
the line x,. Then, we rotate by « about this temporary x-axis, to bring z down to
Z’. Finally, a rotation about the new z-axis (that is, z’) by the angle ¥ will bring
the x-axis into x’ and the y-axis into y’.+ We know the transformations for each
of the three rotations—they are given in (6.19) and (6.34). Combining them in
the proper order, we get

C’. = cos % eBNIZC. 4 jsin % e~ E-M2C
o L (6.35)
CL = isin 5 e“P2C 4 cos 3 e~ BIVI2C_

So just starting from some assumptions about the properties of space, we have
derived the amplitude transformation for any rotation at all. That means that if

T With a little work you can show that the frame x, y, z can also be brought into the
frame x', y’, z’ by the following three rotations about the original axes: (1) rotate by the
angle ¥ around the original z-axis; (2) rotate by the angle « around the original x-axis;
(3) rotate by the angle 8 around the original z-axis.
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Fig. 6-9. The orientation of any Fig. 6-10. An axis A defined by
coordinate frame x’, y/, z' relative to the polar angles 6 and ¢.

another frame x, y, z can be defined in
terms of Euler's angles «, 8, 7.

we know the amplitudes for any state of a spin one-half particle to go into the two
beams of a Stern-Gerlach apparatus S, whose axes are x, y, and z, we can calculate
what fraction would go into either beam of an apparatus T with the axes x’, )/,
and z’. In other words, if we have a state ¢ of a spin one-half particle, whose
amplitudes are C, = (+ |¢) and C_ = (— |¢) to be “up” and “down” with
respect to the z-axis of the x, y, z frame, we also know the amplitudes C’; and CL
to be “up” and “down” with respect to the z’-axis of any other frame x’, ', z'.
The four coefficients in Eqs. (6.35) are the terms of the “transformation matrix”
with which we can project the amplitudes of a spin one-half particle into any
other coordinate system.

We will now work out a few examples to show you how it all works. Let’s
take the following simple question. We put a spin one-half atom through a Stern-
Gerlach apparatus that transmits only the (42) state. What is the amplitude that
it will be in the (4+x) state? The -+x axis is the same as the 42’ axis of a system
rotated 90° about the y-axis. For this problem, then, it is simplest to use Eqs.
(6.32)—although you could, of course, use the complete equations of (6.35).
Since C, = 1and C_ = 0, we get Cy = 1/4/2. The probabilities are the abso-
lute square of these amplitudes; there is a 50 percent chance that the particle will
go through an apparatus that selects the (+x) state. 1f we had asked about ?e
(—x) state the amplitude would have been —1/+/2, which also gives a probability
1/2—as you would expect from the symmetry of space. So if a particle is in the
(42) state, it is equally likely to be in (+x) or (—x), but with opposite phase.

There’s no prejudice in y either. A particle in the (4-z) state has a 50-50
chance of being in (+y) or in (—y). However, for these (using the formula for
rotating —90° about x), the amplitudes are 1/4/2 and —i/+/2. In this case, the
two amplitudes have a phase difference of 90° instead of 180°, as they did for the
(+x) and (—x). In fact, that’s how the distinction between x and y shows up.

As our final example, suppose that we know that a spin one-half particle is in
a state ¥ such that it is polarized “up” along some axis A4, defined by the angles
¢ and ¢ in Fig. 6-10. We want to know the amplitude (C. | ) that the particle
is “up” along z and the amplitude (C_ | y) that it is “down’ along z. We can find
these amplitudes by imagining that 4 is the z-axis of a system whose x-axis lies in
some arbitrary direction—say in the plane formed by 4 and z. We can then bring
the frame of A4 into x, y, z by three rotations. First, we make a rotation by — /2
about the axis 4, which brings the x-axis into the line B in the figure. Then we
rotate by 8 about line B (the new x-axis of frame A) to bring 4 to the z-axis. Finally,
we rotate by the angle (/2 — ¢) about x. Remembering that we have only a (+)
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state with respect to A, we get
c 6 a2 8 sl
4+ = COS i e N C_ = sin z e . (636)

We would like, finally, to summarize the results of this chapter in a form that
will be useful for our later work. First, we remind you that our primary result in
Egs. (6.35) can be written in another notation. Note that Eqs. (6.35) mean
just the same thing as Eq. (6.4). That is, in Egs. (6.35) the coefficients of C, =
(+S|¢)and C_ = (—S|y) are just the amplitudes (j7 | iS) of Eq. (6.4)—the
amplitudes that a particle in the i-state with respect to .S will be in the j-state with
respect to T (when the orientation of T with respect to S is given in terms of the
angles a, 8, and v). We also called them R};® in Eq. (6.6). (We have a plethora of
notations!) For example, Ris+ = (=T | +S) is the coefficient of C in the formula
for C’_, namely, i sin (a/2) e*®~"/2. We can, therefore, make a summary of our
results in the form of a table, as we have done in Table 6-1.

It will occasionally be handy to have these amplitudes already worked out
for some simple special cases. Let’s let R,(¢) stand for a rotation by the angle ¢
about the z-axis. We can also let it stand for the corresponding rotation matrix
(omitting the subscripts i and j, which are to be implicitly understood). In the
same spirit R,(¢) and R,(¢) will stand for rotations by the angle ¢ about the
x-axis or the y-axis. We give in Table 6-2 the matrices—the tables of amplitudes
(T | iS)—which project the amplitudes from the S-frame into the T-frame, where
T is obtained from S by the rotation specified.

Table 6-2

The amplitudes (jT | iS) for a rotation R(¢) by the angle ¢
about the z-axis, x-axis, or y-axis

Table 6-1 - R-(¢)
The amplitudes (jT | iS) for a rotation defined by the (JTlis) +S —-S
Euler angles «, 3, ¥ of Fig. 6-9 4T pié/2 0
Rji(ay ﬁ’ 7) o _T 0 e—i¢/2
(jTlis) +5 -5
R.(¢)
+T cos = eilB+m/2 isin % e—iB—v/2 " s
2 2 (JTViS) +S )
~T isin & ei6—y/2 cos & e—ilB+m/2 +7 cos ¢/2 isin¢/2
2
-T isin ¢/2 cos ¢/2
R,()
(jT)iS) +S -S
+T cos ¢/2 sin ¢/2
-T —sin¢/2 cos ¢/2
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