40

The Principles of Statistical Mechanics

40-1 The exponential atmosphere

We have discussed some of the properties of large numbers of intercolliding
atoms. The subject is called kinetic theory, a description of matter from the point
of view of collisions between the atoms. Fundamentally, we assert that the gross
properties of matter should be explainable in terms of the motion of its parts.

We limit ourselves for the present to conditions of thermal equilibrium, that
is, to a subclass of all the phenomena of nature. The laws of mechanics which
apply just to thermal equilibrium are called statistical mechanics, and in this section
we want to become acquainted with some of the central theorems of this subject.

We already have one of the theorems of statistical mechanics, namely, the
mean value of the kinetic energy for any motion at the absolute temperature T
is 3kT for each independent motion, i.e., for each degree of freedom. That tells us
something about the mean square velocities of the atoms. Our objective now is
to learn more about the positions of the atoms, to discover how many of them
are going to be in different places at thermal equilibrium, and also to go into a
little more detail on the distribution of the velocities. Although we have the mean
square velocity, we do not know how to answer a question such as how many of
them are going three times faster than the root mean square, or how many of them
are going one-quarter of the root mean square speed. Or have they all the same
speed exactly?

So, these are the two questions that we shall try to answer: How are the mole-
cules distributed in space when there are forces acting on them, and how are they
distributed in velocity?

It turns out that the two questions are completely independent, and that the
distribution of velocities is always the same. We already received a hint of the latter
fact when we found that the average kinetic energy is the same, 3kT pet degree of
freedom, no matter what forces are acting on the molecules. The distribution of
the velocities of the molecules is independent of the forces, because the collision
rates do not depend upon the forces.

Let us begin with an example: the distribution of the molecules in an atmosphere
like our own, but without the winds and other kinds of disturbance. Suppose that
we have a column of gas extending to a great height, and at thermal equilibrium—
unlike our atmosphere, which as we know gets colder as we go up. We could
remark that if the temperature differed at different heights, we could demonstrate
lack of equilibrium by connecting a rod to some balls at the bottom (Fig. 40-1),
where they would pick up 3kT from the molecules there and would shake, via the
rod, the balls at the top and those would shake the molecules at the top. So,
ultimately, of course, the temperature becomes the same at all heights in a gravita-
tional field.

If the temperature is the same at all heights, the problem is to discover by
what law the atmosphere becomes tenuous as we go up. If N is the total number
of molecules in a volume V of gas at pressure P, then we know PV = NKT, or

= nkT, where n = N/V is the number of molecules per unit volume. In other
words, if we know the number of molecules per unit volume, we know the pressure,
and vice versa: they are proportional to each other, since the temperature is con-
stant in this problem. But the pressure is not constant, it must increase as the
altitude is reduced, because it has to hold, so to speak, the weight of all the gas
above it. That is the clue by which we may determine how the pressure changes
with height. If we take a unit area at height 4, then the vertical force from below,
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Fig. 40-1. The pressure at height h
must exceed that at h + dh by the
weight of the intervening gas.
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Fig. 40-2. The normalized density
as a function of height in the earth’s
gravitational field for oxygen and for
hydrogen, at constant temperature.

on this unit area, is the pressure P. The vertical force per unit area pushing down
at a height & + dh would be the same, in the absence of gravity, but here it is not,
because the force from below must exceed the force from above by the weight of
gas in the section between 4 and & + dh. Now mg is the force of gravity on each
molecule, where g is the acceleration due to gravity, and n dh is the total number of
molecules in the unit section. So this gives us the differential equation Py qn —
= dP = —mgndh. Since P = nkT, and T is constant, we can eliminate either

P or n, say P, and get

dn _ _mg,

7
for the differential equation, which tells us how the density goes down as we go up
in energy.

We thus have an equation for the particle density n, which varies with height,
but which has a derivative which is proportional to itself. Now a function which
has a derivative proportional to itself is an exponential, and the solution of this
differential equation is

n = nge ™M (40.1)

Here the constant of integration, n,, is obviously the density at # = 0 (which can
be chosen anywhere), and the density goes down exponentially with height.

Note that if we have different kinds of molecules with different masses, they
go down with different exponentials. The ones which were heavier would decrease
with altitude faster than the light ones. Therefore we would expect that because
oxygen is heavier than nitrogen, as we go hlgher and higher in an atmosphere with
nitrogen and oxygen the proportion of nitrogen would increase. This does not
really happen in our own atmosphere, at least at reasonable heights, because there
is so much agitation which mixes the gases back together again. It is not an
isothermal atmosphere. Nevertheless, there is a tendency for lighter materials,
like hydrogen, to dominate at very great heights in the atmosphere, because the
lowest masses continue to exist, while the other exponentials have all died out
(Fig. 40-2).

40-2 The Boltzmann law

Here we note the interesting fact that the numerator in the exponent of Eq.
(40.1) is the potential energy of an atom. Therefore we can also state this particular
law as: the density at any point is proportional to

e —(the potential energy of each atom/kT)

That may be an accident, i.e., may be true only for this particular case of a
uniform gravitational field. However, we can show that it is a more general prop-
osition. Suppose that there were some kind of force other than gravity acting
on the molecules in a gas. For example, the molecules may be charged electrically,
and may be acted on by an electric field or another charge that attracts them. Or,
because of the mutual attractions of the atoms for each other, or for the wall, or
for a solid, or something, there is some force of attraction which varies with
position and which acts on all the molecules. Now suppose, for simplicity, that
the molecules are all the same, and that the force acts on each individual one, so
that the total force on a piece of gas would be simply the number of molecules
times the force on each one. To avoid unnecessary complication, let us choose a
coordinate system with the x-axis in the direction of the force, F.

In the same manner as before, if we take two parallel planes in the gas, sepa-
rated by a distance dx, then the force on each atom, times the n atoms per cm®
(the generalization of the previous nmg), times dx, must be balanced by the pressure
change: Fndx = dP = kT dn. Or, to put this law in a form which will be useful
to us later,

F = kT g)—c (In ). (40.2)



For the present, observe that — F dx is the work we would do in taking a molecule
from x to x + dx, and if F comes from a potential, i.e., if the work done can be
represented by a potential energy at all, then this would also be the difference in
the potential energy (P.E.). The negative differential of potential energy is the
work done, F dx, and we find that d(In n) = —d(P.E.)/kT, or, after integrating,

n = (constant)e FF/HT, (40.3)

Therefore what we noticed in a special case turns out to be true in general. (What
if F does not come from a potential? Then (40.2) has no solution at all. Energy
can be generated, or lost by the atoms running around in cyclic paths for which
the work done is not zero, and no equilbrium can be maintained at all. Thermal
equilibrium cannot exist if the external forces on the atoms are not conservative.)
Equation (40.3), known as Boltzmann’s law, is another of the principles of statistical
mechanics: that the probability of finding molecules in a given spatial arrangement
varies exponentiaily with the negative of the potential energy of that arrangement,
divided by kT.

This, then, could tell us the distribution of molecules: Suppose that we had a
positive ion in a liquid, attracting negative ions around it, how many of them would
be at different distances? If the potential energy is known as a function of distance,
then the proportion of them at different distances is given by this law, and so on,
through many applications.

40-3 Evaporation of a liquid

In more advanced statistical mechanics one tries to solve the following im-
portant problem. Consider an assembly of molecules which attract each other,
and suppose that the force between any two, say i and j, depends only on their
separation ry;, and can be represented as the derivative of a potential function
V(r;;). Figure 40-3 shows a form such a function might have. For r > ro, the
energy decreases as the molecules come together, because they attract, and then
the energy increases very sharply as they come still closer together, because they
repel strongly, which is characteristic of the way molecules behave, roughly
speaking.

Now suppose we have a whole box full of such molecules, and we would like
to know how they arrange themselves on the average. The answer is e PEIET
The total potential energy in this case would be the sum over all the pairs, supposing
that the forces are all in pairs (there may be three-body forces in more complicated
things, but in electricity, for example, the potential energy is all in pairs). Then the
probability for finding molecules in any particular combination of r;;’s will be
proportional to

exp[— ) V(rij)/kT].

Now, if the temperature is very high, so that kT >> |V(ro)|, the exponent is
relatively small almost everywhere, and the probability of finding a molecule is
almost independent of position. Let us take the case of just two molecules:
the e TF/*7 would be the probability of finding them at various mutual distances
r. Clearly, where the potential goes most negative, the probability is largest, and
where the potential goes toward infinity, the probability is almost zero, which
occurs for very small distances. That means that for such atoms in a gas, there is
no chance that they are on top of each other, since they repel so strongly. But there
is a greater chance of finding them per unit volume at the point 7, than at any other
point. How much greater, depends on the temperature. If the temperature is
very large compared with the difference in energy between r = ro and r = oo,
the exponential is always nearly unity. In this case, where the mean kinetic energy
(about kT) greatly exceeds the potential energy, the forces do not make much
difference. But as the temperature falls, the probability of finding the molecules
at the preferred distance o gradually increases relative to the probability of finding
them elsewhere and, in fact, if kT is much less than |V(ro)|, we have a relatively
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Fig. 40-4. Only those molecules
moving up at h = 0 with sufficient
velocity can arrive at height h.

large positive exponent in that neighborhood. In other words, in a given volume they
are much more likely to be at the distance of minimum energy than far apart. As
the temperature falls, the atoms fall together, clump in lumps, and reduce to
liquids, and solids, and molecules, and as you heat them up they evaporate.

The requirements for the determination of exactly how things evaporate,
exactly how things should happen in a given circumstance, involve the following.
First, to discover the correct molecular-force law ¥ (r), which must come from
something else, quantum mechanics, say, or experiment. But, given the law of
force between the molecules, to discover what a billion molecules are going to do
merely consists of studying the function e=2"i/*", Surprisingly enough, since it is
such a simple function and such an easy idea, given the potential, the labor is
enormously complicated; the difficulty is the tremendous number of variables.

In spite of such difficulties, the subject is quite exciting and interesting. It is
often called an example of a “‘many-body problem,” and it really has been a very
interesting thing. In that single formula must be contained all the details, for
example, about the solidification of gas, or the forms of the crystals that the solid
can take, and people have been trying to squeeze it out, but the mathematical
difficulties are very great, not in writing the law, but in dealing with so enormous
a number of variables.

That then, is the distribution of particles in space. That is the end of classical
statistical mechanics, practically speaking, because if we know the forces, we can,
in principle, find the distribution in space, and the distribution of velocities is
something that we can work out once and for all, and is not something that is
different for the different cases. The great problems are in getting particular
information out of our formal solution, and that is the main subject of classical
statistical mechanics.

404 The distribution of molecular speeds

Now we go on to discuss the distribution of velocities, because sometimes it is
interesting or useful to know how many of them are moving at different speeds.
In order to do that, we may make use of the facts which we discovered with regard
to the gas in the atmosphere. We take it to be a perfect gas, as we have already
assumed in writing the potential energy, disregarding the energy of mutual attrac-
tion of the atoms. The only potential energy that we included in our first example
was gravity. We would, of course, have something more complicated if there
were forces between the atoms. Thus we assume that there are no forces between
the atoms and, for a moment, disregard collisions also, returning later to the
justification of this. Now we saw that there are fewer molecules at the height 4
than there are at the height 0; according to formula (40.1), they decrease expo-
nentially with height. How can there be fewer at greater heights? After all, do
not all the molecules which are moving up at height 0 arrive at #? No!, because
some of those which are moving up at 0 are going too slowly, and cannot climb
the potential hill to . With that clue, we can calculate how many must be moving
at various speeds, because from (40.1) we know how many are moving with less
than enough speed to climb a given distance 4. Those are just the ones that account
for the fact that the density at A is lower than at 0.

Now let us put that idea a little more precisely: let us count how many mole-
cules are passing from below to above the plane # = 0 (by calling it height = 0,
we do not mean that there is a floor there; it is just a convenient label, and there is
gas at negative /). These gas molecules are moving around in every direction, but
some of them are moving through the plane, and at any moment a certain number
per second of them are passing through the plane from below to above with different
velocities. Now we note the following: if we call u the velocity which is just needed
to get up to the height 4 (kinetic energy mu?/2 = mgh), then the number of
molecules per second which are passing upward through the lower plane in a
vertical direction with velocity component greater than u is exactly the same as
the number which pass through the upper plane with any upward velocity. Those
molecules whose vertical velocity does not exceed u cannot get through the upper
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plane. So therefore we see that
Number passing & = 0 with v, > u = number passing # = & with v, > 0.

But the number which pass through # with any velocity greater than 0 is less than
the number which pass through the lower height with any velocity greater than 0,
because the number of atoms is greater; that is all we need. We know already that
the distribution of velocities is the same, after the argument we made earlier about
the temperature being constant all the way through the atmosphere. So, since the
velocity distributions are the same, and it is just that there are more atoms lower
down, clearly the number ns o(h), passing with positive velocity at height 4,
and the number ns (0), passing with positive velocity at height 0, are in the same
ratio as the densities at the two heights, which is e ™**T_ But nso(h) = n5.(0),
and therefore we find that

n>4(0) _ o —mIRIKT _ o —mulI2kT
b
n>o(0)

since imu? = mgh. Thus, in words, the number of molecules per unit area per
second passing the height O with a z-component of velocity greater than u is
e—™* 2kT times the total number that are passing through the plane with velocity
greater than zero.

Now this is not only true at the arbitrarily chosen height 0, but of course it is
true at any other height, and thus the distributions of velocities are all the same!
(The final statement does not involve the height 4, which appeared only in the
intermediate argument.) The result is a general proposition that gives us the distri-
bution of velocities. It tells us that if we drill a little hole in the side of a gas pipe,
a very tiny hole, so that the collisions are few and far between, i.e., are farther
apart than the diameter of the hole, then the particles which are coming out will
have different velocities, but the fraction of particles which come out at a velocity
greater than u is e~™*"/ 27,

Now we return to the question about the neglect of collisions: Why does it
not make any difference? We could have pursued the same argument, not with a
finit height 4, but with an infinitesimal height A, which is so small that there would
be no room for collisions between 0 and 4. But that was not necessary: the argu-
ment is evidently based on an analysis of the energies involved, the conservation
of energy, and in the collisions that occur there is an exchange of energies among
the molecules. However, we do not really care whether we follow the same mole-
cule if energy is merely exchanged with another molecule. So it turns out that even
if the problem is analyzed more carefully (and it is more difficult, naturally, to doa
rigorous job), it still makes no difference in the result.

It is interesting that the velocity distribution we have found is just

n>u o e—kmetlc energy/kT‘ (404)

This way of describing the distribution of velocities, by giving the number of
molecules that pass a given area with a certain minimum z-component, is not the
most convenient way of giving the velocity distribution. For instance, inside the
gas, one more often wants to know how many molecules are moving with a
z-component of velocity between two given values, and that, of course, is not di-
rectly given by Eq. (40.4). We would like to state our result in the more con-
ventional form, even though what we already have written is quite general. Note
that it is not possible to say that any molecule has exactly some stated velocity;
none of them has a velocity exactly equal to 1.7962899173 meters per second.
So in order to make a meaningful statement, we have to ask how many are to be
found in some range of velocities. We have to say how many have velocities between
1.796 and 1.797, and so on. On mathematical terms, let f(u) du be the fraction of
all the molecules which have velocities between « and u + du or, what is the same
thing (if du is infinitesimal), all that have a velocity u with a range du. Figure 40-5
shows a possible form for the function f(x), and the shaded part, of width du and
mean height f(u), represents this fraction f(u) du. That is, the ratio of the shaded
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area to the total area of the curve is the relative proportion of molecules with
velocity u within du. If we define f(u) so that the fraction having a velocity in this
range is given directly by the shaded area, then the total area must be 100 percent
of them, that is,

" fwydu = 1. (40.5)

Now we have only to get this distribution by comparing it with the theorem

we derived before. First we ask, what is the number of molecules passing through
an area per second with a velocity greater than u, expressed in terms of Sfw)?
At first we might think it is merely the integral of f: S(u) du, but it is not, because
we want the number that are passing the area per second. The faster ones pass
more often, so to speak, than the slower ones, and in order to express how many
pass, you have to multiply by the velocity. (We discussed that in the previous
chapter when we talked about the number of collisions.) In a given time ¢ the
total number which pass through the surface is all of those which have been able
to arrive at the surface, and the number which arrive come from a distance wur.
So the number of molecules which arrive is not simply the number which are there,
but the number that are there per unit volume, multiplied by the distance that
they sweep through in racing for the area through which they are supposed to go,
and that distance is proportional to u. Thus we need the integral of u times f(u) du,
an infinite integral with a lower limit u, and this must be the same as we found
before, namely e~"**/%*7  with a proportionality constant which we will get later:

/w uf(uydu = const - e~™* 12T (40.6)

Now if we differentiate the integral with respect to u, we get the thing that is
inside the integral, i.e., the integrand (with a minus sign, since u is the lower limit),
and if we differentiate the other side, we get u times the same exponential (and
some constants). The ’s cancel and we find

fw)du = Ce~™12%T g, (40.7)

We retain the du on both sides as a reminder that it is a distribution, and it tells
what the proportion is for velocity between u and u + du.

The constant C must be so determined that the integral is unity, according to
Eq. (40.5). Now we can prove* that

/w e dx = /.
Using this fact, it is easy to find that C = +/m/27kT.

Since velocity and momentum are proportional, we may say that the distribu-
tion of momenta is also proportional to e ™ ®/*7 per unit momentum range.
It turns out that this theorem is true in relativity too, if it is in terms of momentum,
while if it is in velocity it is not, so it is best to learn it in momentum instead of in
velocity :

f(p)dp = Ce BT gp, (40.8)

So we find that the probabilities of different conditions of energy, kinetic and
potential, are both given by e~*"°r&¥/*” 5 very easy thing to remember and a rather
beautiful proposition.

* To get the value of the integral, let

1= f:oe_’z dx.
Then - .
=[x [T e dy = [ [7 o=+ gy ax,

which is a double integral over the whole xy-plane. But this can also be written in polar
coordinates as " °
I? = fo e~ dprdr = 7rf0 e~tdt = .
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So far we have, of course, only the distribution of the velocities “vertically.”
We might want to ask, what is the probability that a molecule is moving in another
direction? Of course these distributions are connected, and one can obtain the
complete distribution from the one we have, because the complete distribution
depends only on the square of the magnitude of the velocity, not upon the z-com-
ponent. It must be something that is independent of direction, and there is only
one function involved, the probability of different magnitudes. We have the
distribution of the z-component, and therefore we can get the distribution of the
other components from it. The result is that the probability is still proportional to
¢~KE/T but now the kinetic energy involves three parts, mv2/2, mv2/2, and
mvZj2, summed in the exponent. Or we can write it as a product:

f(vxa Uy, vz) dvy dvy dv,
2 2 .
o e~ Mal 28T e~ ™I 2T . oMVl 2T dv, dv, dv,. (40.9)

You can see that this formula must be right because, first, it is a function only of
v2, as required, and second, the probabilities of various values of v, obtained by
integrating over all v, and v, is just (40.7). But this one function (40.9) can do
both those things!

40-5 The specific heats of gases

Now we shall look at some ways to test the theory, and to see how
successful is the classical theory of gases. We saw earlier that if U is the internal
energy of N molecules, then PV = NkT = (v — 1)U holds, sometimes, for
some gases, maybe. If it is 2 monatomic gas, we know this is also equal to 2
of the kinetic energy of the center-of-mass motion of the atoms. If it is a monatomic
gas, then the kinetic energy is equal to the internal energy, and therefore ¥ —
1 = 2. But suppose it is, say, a more complicated molecule, that can spin and
vibrate, and let us suppose (it turns out to be true according to classical mechanics)
that the energies of the internal motions are also proportional to k7. Then at a
given temperature, in addition to kinetic energy k7, it has internal vibrational or
rotational energy. So the total U includes not just the internal kinetic energy, but
also the rotational energy, and we get a different value of v. Technically, the
best way to measure ¥ is by measuring the specific heat, which is the change in
energy with temperature. We will return to that approach later. For our present
purposes, we may suppose Y is found experimentally from the P¥” curve for
adiabatic compression.

Let us make a calculation of ¥ for some cases. First, for a monatomic gas
U is the total energy, the same as the kinetic energy, and we know already that
v should be &. For a diatomic gas, we may take, as an example, oxygen, hydrogen
iodide, hydrogen, etc., and suppose that the diatomic gas can be represented as
two atoms held together by some kind of force like the one of Fig. 40-3. We may
also suppose, and it turns out to be quite true, that at the temperatures that are
of interest for the diatomic gas, the pairs of atoms tend strongly to be separated
by ro, the distance of potential minimum. If this were not true, if the probability
were not strongly varying enough to make the great majority sit near the bottom,
we would have to remember that oxygen gas is a mixture of O, and single oxygen
atoms in a nontrivial ratio. We know that there are, in fact, very few single oxygen
atoms, which means that the potential energy minimum is very much greater in
magnitude than kT, as we have seen. Since they are clustered strongly around
ro, the only part of the curve that is needed is the part near the minimum, which
may be approximated by a parabola. A parabolic potential implies a harmonic
oscillator, and in fact, to an excellent approximation, the oxygen molecule can be
represented as two atoms connected by a spring.

Now what is the total energy of this molecule at temperature 7?7 We know
that for each of the two atoms, each of the kinetic energies should be kT, so the
kinetic energy of both of them is 3kT + 3kT. We can also put this in a different
way: the same 2 plus £ can also be looked at as kinetic energy of the center of mass
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Table 40-1

Values of the specific heat ratio, v,
for various gases

Gas T (O Y
He —180 1.660
Kr 19 1.68
Ar 15 1.668
H: 100 1.404
02 100 1.399
HI 100 1.40
Bre 300 1.32
Iz 185 1.30
NH3 15 1.310
C2Hp 15 1.22

1.2
1.0} 1 ] | .
[¢] 500 1000 1500 2000
TEMPERATURE (*C)
Fig. 40-6. Experimental valves of

Y as a function of temperature for hydro-
gen and oxygen. Classical theory
predicts Y = 1.286, independent of
temperature.

(), kinetic energy of rotation (%), and kinetic energy of vibration (4). We know
that the kinetic energy of vibration is 4, since there is just one dimension involved
and each degree of freedom has $k7. Regarding the rotation, it can turn about
either of two axes, so there are two independent motions. We assume that the
atoms are some kind of points, and cannot spin about the line joining them;
this is something to bear in mind, because if we get a disagreement, maybe that is
where the trouble is. But we have one more thing, which is the potential energy of
vibration; how much is that? In a harmonic oscillator the average kinetic energy
and average potential energy are equal, and therefore the potential energy of
vibration is 3k7,, also. The grand total of energy is U = ZkT, or kT is 2U per
atom. That means, then, that v is 2 instead of £, i.e., v = 1.286.

We may compare these numbers with the relevant measured values shown in
Table 40-1. Looking first at helium, which is a monatomic gas, we find very
nearly §, and the error is probably experimental, although at such a low temperature
there may be some forces between the atoms. Krypton and argon, both monatomic,
agree also within the accuracy of the experiment.

We turn to the diatomic gases and find hydrogen with 1.404, which does not
agree with the theory, 1.286. Oxygen, 1.399, is very similar, but again not in
agreement. Hydrogen iodide again is similar at 1.40. It begins to look as though
the right answer is 1.40, but it is not, because if we look further at bromine we see
1.32, and at iodine we see 1.30. Since 1.30 is reasonably close to 1.286, iodine
may be said to agree rather well, but oxygen is far off. So here we have a dilemma.
We have it right for one molecule, we do not have it right for another molecule,
and we may need to be pretty ingenious in order to explain both.

Let us look further at a still more complicated molecule with large numbers
of parts, for example, C,Hg, which is ethane. It has eight different atoms, and they
are all vibrating and rotating in various combinations, so the total amount of
internal energy must be an enormous number of kT’s, at least 12kT for kinetic
energy alone, and ¥ — 1 must be very close to zero, or ¥ almost exactly 1. In
fact, it is lower, but 1.22 is not so much lower, and is higher than the 15 calculated
from the kinetic energy alone, and it is just not understandable!

Furthermore, the whole mystery is deep, because the diatomic molecule cannot
be made rigid by a limit. Even if we made the couplings stiffer indefinitely, although
it might not vibrate much, it would nevertheless keep vibrating. The vibrational
energy inside is still k7, since it does not depend on the strength of the coupling.
But if we could imagine absolute rigidity, stopping all vibration to eliminate a
variable, then we would get U = $kT and v = 1.40 for the diatomic case. This
looks good for Hy or O,. On the other hand, we would still have problems,
because v for either hydrogen or oxygen varies with temperature! From the
measured values shown in Fig. 40-6, we see that for H,, ¥ varies from about 1.6
at —185°C to 1.3 at 2000°C. The variation is more substantial in the case of
hydrogen than for oxygen, but nevertheless, even in oxygen, ¥ tends definitely to
go up as we go down in temperature.

40-6 The failure of classical physics

So, all in all, we might say that we have some difficulty. We might try some
force law other than a spring, but it turns out that anything else will only make
7 higher. If we include more forms of energy, ¥ approaches unity more closely,
contradicting the facts. All the classical theoretical things that one can think of
will only make it worse. The fact is that there are electrons in each atom, and we
know from their spectra that there are internal motions; each of the electrons should
have at least 3kT of kinetic energy, and something for the potential energy, so
when these are added in, ¥ gets still smaller. It is ridiculous. It is wrong.

The first great paper on the dynamical theory of gases was by Maxwell in
1859. On the basis of ideas we have been discussing, he was able accurately to
explain a great many known relations, such as Boyle’s law, the diffusion theory,
the viscosity of gases, and things we shall talk about in the next chapter. He listed
all these great successes in a final summary, and at the end he said, “Finally, by
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establishing a necessary relation between the motions of translation and rotation
(he is talking about the kT theorem) of all particles not spherical, we proved that
a system of such particles could not possibly satisfy the known relation between
the two specific heats.” He is referring to v (which we shall see later is related to
two ways of measuring specific heat), and he says we know we cannot get the right
answer.

Ten years later, in a lecture, he said, “I have now put before you what I
consider to be the greatest difficulty yet encountered by the molecular theory.”
These words represent the first discovery that the laws of classical physics were
wrong. This was the first indication that there was something fundamentally
impossible, because a rigorously proved theorem did not agree with experiment.
About 1890, Jeans was to talk about this puzzle again. One often hears it said that
physicists at the latter part of the nineteenth century thought they knew all the
significant physical laws and that all they had to do was to calculate more decimal
places. Someone may have said that once, and others copied it. But a thorough
reading of the literature of the time shows they were all worrying about something.
Jeans said about this puzzle that it is a very mysterious phenomenon, and it seems
as though as the temperature falls, certain kinds of motions “freeze out.”

If we could assume that the vibrational motion, say, did not exist at low tem-
perature and did exist at high temperature, then we could imagine that a gas might
exist at a temperature sufficiently low that vibrational motion does not occur,
so ¥ = 1.40, or a higher temperature at which it begins to come in, so 7 falls.
The same might be argued for the rotation. If we can eliminate the rotation, say
it “freezes out” at sufficiently low temperature, then we can understand the fact
that the ¥ of hydrogen approaches 1.66 as we go down in temperature. How can
we understand such a phenomenon? Of course that these motions “freeze out”
cannot be understood by classical mechanics. It was only understood when quan-
tum mechanics was discovered.

Without proof, we may state the results for statistical mechanics of the
quantum-mechanical theory. We recall that according to quantum mechanics, a
system which is bound by a potential, for the vibrations, for example, will have a
discrete set of energy levels, i.e., states of different energy. Now the question is:
how is statistical mechanics to be modified according to quantum-mechanical
theory? It turns out, interestingly enough, that although most problems are more
difficult in quantum mechanics than in classical mechanics, problems in statistical
mechanics are much easier in quantum theory! The simple result we have in classi-
cal mechanics, that n = nge *"¢*®/*T becomes the following very important
theorem: If the energies of the set of molecular states are called, say, Eo, Ey, Eg,

., E; ..., then in thermal equilibrium the probability of finding a molecule
in the particular state of having energy E; is proportional to e~"+/**. That gives
the probability of being in various states. In other words, the relative chance, the
probability, of being in state E; relative to the chance of being in state E, is

P, o—EslkT

1% = ———e—Eo/kT ] (40.10)

which, of course, is the same as
ny, = noe Fr—E0T (40.11)

since Py = n;/Nand Py = ny/N. Soitis less likely to be in a higher energy state
than in a lower one. The ratio of the number of atoms in the upper state to the
number in the lower state is e raised to the power (minus the energy difference,
over kT)—a very simple proposition.

Now it turns out that for a harmonic oscillator the energy levels are evenly
spaced. Calling the lowest energy E, = O (it actually is not zero, it is a little differ-
ent, but it does not matter if we shift all energies by a constant), the first one is
then E; = hw, and the second one is 2k, and the third one is 3fw, and so on.

Now let us see what happens. We suppose we are studying the vibrations of a
diatomic molecule, which we approximate as a harmonic oscillator. Let us ask
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what is the relative chance of finding a molecule in state E; instead of in state E 0-
The answer is that the chance of finding it in state E, relative to that of findin gitin
state Eo, goes down as e ™/*”. Now suppose that kT is much less than #ew, and
we have a Jow-temperature circumstance. Then the probability of its being in state
E, is extremely small. Practically all the atoms are in state E,. If we change the
temperature but still keep it very small, then the chance of its being in state E, =
fiw remains infinitesimal—the energy of the oscillator remains nearly zero; it does
not change with temperature so long as the temperature is much less than #w.
All oscillators are in the bottom state, and their motion is effectively “frozen”;
there is no contribution of it to the specific heat. We can judge, then, from Table
40-1, that at 100°C, which is 373 degrees absolute, k7" is much less than the vibra-
tional energy in the oxygen or hydrogen molecules, but not so in the iodine mole-
cule. The reason for the difference is that an iodine atom is very heavy, compared
with hydrogen, and although the forces may be comparable in iodine and hydro-
gen, the iodine molecule is so heavy that the natural frequency of vibration is
very low compared with the natural frequency of hydrogen. With #iw higher than
kT at room temperature for hydrogen, but lower for iodine, only the latter, iodine,
exhibits the classical vibrational energy. As we increase the temperature of a gas,
starting from a very low value of T, with the molecules almost all in their lowest
state, they gradually begin to have an appreciable probability to be in the second
state, and then in the next state, and so on. When the probability is appreciable
for many states, the behavior of the gas approaches that given by classical physics,
because the quantized states become nearly indistinguishable from a continuum
of energies, and the system can have almost any energy. Thus, as the temperature
rises, we should again get the results of classical physics, as indeed seems to be the
case in Fig. 40-6. It is possible to show in the same way that the rotational states
of atoms are also quantized, but the states are so much closer together that in
ordinary circumstances kT is bigger than the spacing. Then many levels are excited,
and the rotational kinetic energy in the system participates in the classical way.
The one example where this is not quite true at room temperature is for hydrogen.

This is the first time that we have really deduced, by comparison with experi-
ment, that there was something wrong with classical physics, and we have looked
for a resolution of the difficulty in quantum mechanics in much the same way as
it was done originally. It took 30 or 40 years before the next difficulty was dis-
covered, and that had to do again with statistical mechanics, but this time the
mechanics of a photon gas. That problem was solved by Planck, in the early years
of this century.,
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