29

Interference

29-1 Electromagnetic waves

In this chapter we shall discuss the subject of the preceding chapter more
mathematically. We have qualitatively demonstrated that there are maxima and
minima in the radiation field from two sources, and our problem now is to describe
the field in mathematical detail, not just qualitatively.

We have already physically analyzed the meaning of formula (28.6) quite
satisfactorily, but there are a few points to be made about it mathematically. In
the first place, if a charge is accelerating up and down along a line, in a motion of
very small amplitude, the field at some angle 8 from the axis of the motion is in a
direction at right angles to the line of sight and in the plane containing both the
acceleration and the line of sight (Fig. 29-1). If the distance is called r, then at
time 7 the electric field has the magnitude

—qa(t — r/c)sin @

E(n = 4mrepcir

(29.1)

where a(t — r/c) is the acceleration at the time (¢ — r/c), called the retarded
acceleration.

Now it would be interesting to draw a picture of the field under different
conditions. The thing that is interesting, of course, is the factor a(t — r/c), and to
understand it we can take the simplest case, § = 90°, and plot the field graphically.
What we had been thinking of before is that we stand in one position and ask how
the field there changes with time. But instead of that, we are now going to see what
the field looks like at different positions in space at a given instant. So what we
want is a “snapshot” picture which tells us what the field is in different places.
Of course it depends upon the acceleration of the charge. Suppose that the charge
at first had some particular motion: it was initially standing still, and it suddenly
accelerated in some manner, as shown in Fig. 29-2, and then stopped. Then,
a little bit later, we measure the field at a different place. Then we may assert that
the field will appear as shown in Fig. 29-3. At each point the field is determined
by the acceleration of the charge at an earlier time, the amount earlier being the
delay r/c. The field at farther and farther points is determined by the acceleration at
earlier and earlier times. So the curve in Fig. 29-3 is really, in a sense, a *““reversed”
plot of the acceleration as a function of time; the distance is related to time by a
constant scale factor ¢, which we often take as unity. This is easily seen by consider-
ing the mathematical behavior of a(tr — r/c). Evidently, if we add a little time
At, we get the same value for a(t — r/c) as we would have if we had subtracted a
little distance: Ar = —c At.

Stated another way: if we add a little time A¢, we can restore a(t — r/c) to its
former value by adding a little distance Ar = ¢ Ar. That is, as time goes on the
field moves as a wave outward from the source. That is the reason why we sometimes
say light is propagated as waves. It is equivalent to saying that the field is delayed,
or to saying that the electric field is moving outward as time goes on.

An interesting special case is that where the charge ¢ is moving up and down
in an oscillatory manner. The case which we studied experimentally in the last
chapter was one in which the displacement x at any time t was equal to a certain
constant x, the magnitude of the oscillation, times cos wt. Then the acceleration is

a = —w?xgcoswl = a,cos wt, (29.2)

29-1

29-1 Electromagnetic waves
29-2 Energy of radiation
29-3 Sinusoidal waves

29-4 Two dipole radiators

29-5 The mathematics of interference

Fig. 29-1. The electric field E due
to a positive charge whose retarded
acceleration is a'.

Fig. 29-2. The acceieration of a
certain charge as a function of time.

Fig. 29-3. The electric field as a
function of position at a later time. (The
1/r variation is ignored.)



Fig. 29-4. The energy flowing within
the cone OABCD is independent of the
distance r at which it is measured.

where a, is the maximum acceleration, —w?x,. Putting this formula into (29.1),

we find

agcos w(t — r/c)
4megre? '

E = —¢gsin§ (29.3)
Now, ignoring the angle 8 and the constant factors, let us see what that looks like
as a function of position or as a function of time.

29-2 Energy of radiation

First of all, at any particular moment or in any particular place, the strength
of the field varies inversely as the distance r, as we mentioned previously. Now
we must point out that the energy content of a wave, or the energy effects that such
an electric field can have, are proportional to the square of the field, because if,
for instance, we have some kind of a charge or an oscillator in the electric field,
then if we let the field act on the oscillator, it makes it move. If this is a linear
oscillator, the acceleration, velocity, and displacement produced by the electric
field acting on the charge are all proportional to the field. So the kinetic energy
which is developed in the charge is proportional to the square of the field. So we
shall take it that the energy that a field can deliver to a system is proportional
somehow to the square of the field.

This means that the energy that the source can deliver decreases as we get
farther away; in fact, it varies inversely as the square of the distance. But that has
a very simple interpretation: if we wanted to pick up all the energy we could from
the wave in a certain cone at a distance r; (Fig. 29-4), and we do the same at an-
other distance r;, we find that the amount of energy per unit area at any one
place goes inversely as the square of r, but the area of the surface intercepted by
the cone goes directly as the square of . So the energy that we can take out of the
wave within a given conical angle is the same, no matter how far away we are!
In particular, the total energy that we could take out of the whole wave by putting
absorbing oscillators all around is a certain fixed amount. So the fact that the
amplitude of E varies as 1/r is the same as saying that there is an energy flux
which is never lost, an energy which goes on and on, spreading over a greater and
greater effective area. Thus we see that after a charge has oscillated, it has lost
some energy which it can never recover; the energy keeps going farther and farther
away without diminution. So if we are far enough away that our basic approxima-
tion is good enough, the charge cannot recover the energy which has been, as we
say, radiated away. Of course the energy still exists somewhere, and is available
to be picked up by other systems. We shall study this energy “loss” further in
Chapter 32.

Let us now consider more carefully how the wave (29.3) varies as a function
of time at a given place, and as a function of position at a given time. Again we
ignore the 1/r variation and the constants.

29-3 Sinusoidal waves

First let us fix the position r, and watch the field as a function of time. It is
oscillatory at the angular frequency w. The angular frequency w can be defined
as the rate of change of phase with time (radians per second). We have already
studied such a thing, so it should be quite familiar to us by now. The period is
the time needed for one oscillation, one complete cycle, and we have worked that
out too; it is 27/w, because w times the period is one cycle of the cosine.

Now we introduce a new quantity which is used a great deal in physics. This
has to do with the opposite situation, in which we fix 7 and look at the wave as a
function of distance r. Of course we notice that, as a function of r, the wave (29.3)
is also oscillatory. That is, aside from 1/r, which we are ignoring, we see that £
oscillates as we change the position. So, in analogy with w, we can define a quantity
called the wave number, symbolized as k. This is defined as the rate of change of
phase with distance (radians per meter). That is, as we move in space at a fixed
time, the phase changes.
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There is another quantity that corresponds to the period, and we might call
it the period in space, but it is usually called the wavelength, symbolized . The
wavelength is the distance occupied by one complete cycle. It is easy to see, then,
that the wavelength is 27 /k, because k times the wavelength would be the number
of radians that the whole thing changes, being the product of the rate of change
of the radians per meter, times the number of meters, and we must make a 27
change for one cycle. So kA = 27 is exactly analogous to wty = 2.

Now in our particular wave there is a definite relationship between the fre-
quency and the wavelength, but the above definitions of k and w are actually quite
general. That is, the wavelength and the frequency may not be related in the
same way in other physical circumstances. However, in our circumstance the
rate of change of phase with distance is easily determined, because if we call
¢ = w(t — r/c) the phase, and differentiate (partially) with respect to distance
r, the rate of change, d¢/or, is
Il _ 4 @, (29.4)

ar | c

There are many ways to represent the same thing, such as

N=cty (29.5) W o= ¢ (29.7)

If
Il

w=ck  (29.6) Wk = 2mc: (29.8)

Why is the wavelength equal to ¢ times the period? That’s very easy, of course,
because if we sit still and wait for one period to elapse, the waves, travelling at the
speed ¢, will move a distance c¢tq, and will of course have moved over just one
wavelength.

{n a physical situation other than that of light, £ is not necessarily related to
w in this simple way. If we call the distance along an axis x, then the formula for
a cosine wave moving in a direction x with a wave number k and an angular fre-
quency o will be written in general as cos (wf — kx).

Now that we have introduced the idea of wavelength, we may say something
more about the circumstances in which (29.1) is a legitimate formula. We recall
that the field is made up of several pieces, one of which varies inversely as r, another
part which varies inversely as r2, and others which vary even faster. It would be
worth while to know in what circumstances the 1/r part of the field is the most
important part, and the otBer parts are relatively small. Naturally, the answer is
“if we go ‘far enough’ away,” because terms which vary inversely as the square
ultimately become negligible compared with the 1/r term. How far is “far enough”?
The answer is, qualitativeiy, that the other terms are of order A/r smaller than the
I/r term. Thus, so long as we are beyond a few wavelengths, (29.1) is an excellent
approximation to the field. Sometimes the region beyond a few wavelengths is
called the “wave zone.”

29-4 Two dipole radiators

Next let us discuss the mathematics involved in combining the effects of two
oscillators to find the net field at a given point. This is very easy in the few cases
that we considered in the previous chapter. We shall first describe the effects
qualitatively, and then more quantitatively. Let us take the simple case, where the
oscillators are situated with their centers in the same horizontal plane as the de-
tector, and the line of vibration is vertical.

Figure 29-5(a) represents the top view of two such oscillators, and in this
particular example they are half a wavelength apart in a N-S direction, and are
oscillating together in the same phase, which we call zero phase. Now we would
like to know the intensity of the radiation in various directions. By the intensity
we mean the amount of energy that the field carries past us per second, which is
proportional to the square of the field, averaged in time. So the thing to look at,
when we want to know how bright the light is, is the square of the electric field,
not the electric field itself. (The electric field tells the strength of the force felt by a
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Fig. 29-5. The intensities in various
directions from two dipole oscillators
one-half wavelength apart. Left: in
phase (@ = 0). Right: one-half period
out of phase (o = ).
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Fig. 29-6. A pair of dipole antennas
giving maximum power in one direction.

stationary charge, but the amount of energy that is going past, in watts per square
meter, is proportional to the square of the electric field. We shall derive the constant
of proportionality in the next chapter.) If we look at the array from the W side,
both oscillators contribute equally and in phase, so the electric field is twice as
strong as it would be from a single oscillator. Therefore the intensity is Sfour times
as strong as it would be if there were only one oscillator. (The numbers in Fig.
29-5 represent how strong the intensity would be in this case, compared with what
it would be if there were only a single oscillator of unit strength.) Now, in either
the N or S direction along the line of the oscillators, since they are half a wavelength
apart, the effect of one oscillator turns out to be out of phase by exactly half an
oscillation from the other, and therefore the fields add to zero. At a certain par-
ticular intermediate angle (in fact, at 30°) the intensity is 2, and it falls off, 4, 2, 0,
and so forth. We have to learn how to find these numbers at other angles. Itisa
question of adding two oscillations with different phases.

Let us quickly look at some other cases of interest. Suppose the oscillators are
again one-half a wavelength apart, but the phase « of one is set half a period behind
the other in its oscillation (Fig. 29-5b). In the W direction the intensity is now
zero, because one oscillator is “pushing” when the other one is “pulling.” But in
the N direction the signal from the near one comes at a certain time, and that of
the other comes half a period later. But the latter was originally half a period
behind in timing, and therefore it is now exactly in time with the first one, and so
the intensity in this direction is 4 units. The intensity in the direction at 30° is
still 2, as we can prove later.

Now we come to an interesting case which shows up a possibly useful feature.
Let us remark that one of the reasons that phase relations of oscillators are in-
teresting is for beaming radio transmitters. For instance, if we build an antenna
system and want to send a radio signal, say, to Hawaii, we set the antennas up as
in Fig. 29-5(a) and we broadcast with our two antennas in phase, because Hawaii
is to the west of us. Then we decide that tomorow we are going to broadcast
toward Alberta, Canada. Since that is north, not west, all we have to do is to
reverse the phase of one of our antennas, and we can broadcast to the north.
So we can build antenna systems with various arrangements. Ours is one of the
simplest possible ones; we can make them much more complicated, and by chang-
ing the phases in the various antennas we can send the beams in various directions
and send most of the power in the direction in which we wish to transmit, without
ever moving the antenna! In both of the preceding cases, however, while we are
broadcasting toward Alberta we are wasting a lot of power on Easter Istand, and
it would be interesting to ask whether it is possible to send it in only one direction.
At first sight we might think that with a pair of antennas of this nature the result
is always going to be symmetrical. So let us consider a case that comes out un-
symmetrical, to show the possible variety.

If the antennas are separated by one-quarter wavelength, and if the N one
is one-fourth period behind the S one in time, then what happens (Fig. 29-6)?
In the W direction we get 2, as we will see later. In the S direction we get zero,
because the signal from S comes at a certain time; that from N comes 90° later in
time, but it is already 90° behind in its built-in phase, therefore it arrives, altogether,
180° out of phase, and there is no effect. On the other hand, in the N direction,
the N signal arrives earlier than the S signal by 90° in time, because it is a quarter
wavelength closer. But its phase is set sq_that it is oscillating 90° behind in time,
which just compensates the delay difference, and therefore the two signals appear
together in phase, making the field strength twice as large, and the energy four
times as great.

Thus, by using some cleverness in spacing and phasing our antennas, we can
send the power all in one direction. But still it is distributed over a great range of
angles. Can we arrange it so that it is focused still more sharply in a particular
direction? Let us consider the case of Hawaii again, where we are sending the
beam east and west but it is spread over quite an angle, because even at 30° we are
still getting half the intensity—we are wasting the power. Can we do better than
that? Let us take a situation in which the separation is ten wavelengths (Fig.
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29-7), which is more nearly comparable to the situation in which we experimented
in the previous chapter, with separations of several wavelengths rather than a
small fraction of a wavelength. Here the picture is quite different.

If the oscillators are ten wavelengths apart (we take the in-phase case to make
it easy), we see that in the E-W direction, they are in phase, and we get a strong
intensity, four times what we would get if one of them were there alone. On the
other hand, at a very small angle away, the arrival times differ by 180° and the
intensity is zero. To be precise, if we draw a line from each oscillator to a distant
point and the difference A in the two distances is A/2, half an oscillation, then they
will be out of phase. So this first null occurs when that happens. (The figure is
not drawn to scale; it is only a rough sketch.) This means that we do indeed have
a very sharp beam in the direction we want, because if we just move over a little
bit we lose all our intensity. Unfortunately for practical purposes, if we were
thinking of making a radio broadcasting array and we doubled the distance A, then
we would be a whole cycle out of phase, which is the same as being exactly in
phase again! Thus we get many successive maxima and minima, just as we found
with the 24X spacing in Chapter 28.

Now how can we arrange to get rid of all these extra maxima, or “lobes,” as
they are called? We could get rid of the unwanted lobes in a rather interesting way.
Suppose that we were to place another set of antennas between the two that we
already have. That is, the outside ones are still 10A apart, but between them, say
every 2\, we have put another antenna, and we drive them all in phase. There are
now six antennas, and if we looked at the intensity in the E-W direction, it would,
of course, be much higher with six antennas than with one. The field would be
six times and the intensity thirty-six times as great (the square of the field). We
get 36 units of intensity in that direction. Now if we look at neighboring points,
we find a zero as before, roughly, but if we go farther, to where we used to get a
big “bump,’ we get a much smaller “bump” now. Let us try to see why.

The reason is that although we might expect to get a big bump when the
distance A is exactly equal to the wavelength, it is true that dipoles 1 and 6 are then
in phase and are cooperating in trying to get some strength in that direction. But
numbers 3 and 4 are roughly § a wavelength out of phase with 1 and 6, and although
1 and 6 push together, 3 and 4 push together too, but in opposite phase. Therefore
there is very little intensity in this direction—but there is something; it does not
balance exactly. This kind of thing keeps on happening; we get very little bumps,
and we have the strong beam in the direction where we want it. But in this particu-
lar example, something else will happen: namely, since the distance between suc-
cessive dipoles is 2X, it is possible to find an angle where the distance § between
successive dipoles is exactly one wavelength, so that the effects from all of them are
in phase again. Each one is delayed relative to the next one by 360°, so they all
come back in phase, and we have another strong beam in that direction! It is
easy to avoid this in practice because it is possible to put the dipoles closer than one
wavelength apart. If we put in more antennas, closer than one wavelength apart,
then this cannot happen. But the fact that this can happen at certain angles, if the
spacing is bigger than one wavelength, is a very interesting and useful phenomenon
in other applications—not radio broadcasting, but in diffraction gratings.

29-5 The mathematics of interference

Now we have finished our analysis of the phenomena of dipole radiators
qualitatively, and we must learn how to analyze them quantitatively. To find the
effect of two sources at some particular angle in the most general case, where the
two oscillators have some intrinsic relative phase o from one another and the
strengths 4, and A4, are not equal, we find that we have to add two cosines having
the same frequency, but with different phases. It is very easy to find this phase
difference; it is made up of a delay due to the difference in distance, and the
intrinsic, built-in phase of the oscillation. Mathematically, we have to find the
sum R of two waves: R = A, cos (wt + ¢1) + A5 c0s (wf + ¢5). How do we
do it?
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Fig. 29-7. The intensity pattern for
two dipoles separated by 10\,

Fig. 29-8. A six-dipole antenna ar-
ray and part of its intensity pattern.
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Fig. 29-9. A geometrical method for
combining two cosine waves. The entire
diagram is thought of as rotating counter-
clockwise with angular frequency w.

It is really very easy, and we presume that we already know how to do it.
However, we shall outline the procedure in some detail. First, we can, if we are
clever with mathematics and know enough about cosines and sines, simply work
it out. The easiest such case is the one where A4, and A4, are equal, let us say they
are both equal to 4. In those circumstances, for example (we could call this the
trigonometric method of solving the problem), we have

R = Alcos (ot + ¢1) + cos (wf + ¢2)]. (29.9)
Once, in our trigonometry class, we may have learned the rule that

cos A + cos B = 2cos3(A4 + B)cos 3(4 — B). (29.10)
If we know that, then we can immediately write R as

R = 24cos 3(¢1 — ¢2)cos(wt + 361 + 3¢2). (29.11)

So we find that we have an oscillatory wave with a new phase and a new amplitude.
In general, the result will be an oscillatory wave with a new amplitude A4, which
we may call the resultant amplitude, oscillating at the same frequency but with a
phase difference ¢p, called the resultant phase. In view of this, our particular case
has the following result: that the resultant amplitude is

Ar = 24.cos 3(¢1 — ¢2), (29.12)

and the resultant phase is the average of the two phases, and we have completely
solved our problem.

Now suppose that we cannot remember that the sum of two cosines is twice
the cosine of half the sum times the cosine of half the difference. Then we may use
another method of analysis which is more geometrical. Any cosine function of
wt can be considered as the horizontal projection of a rotating vector. Suppose
there were a vector A, of length A4, rotating with time, so that its angle with the
horizontal axis is w¢ + ¢;. (We shall leave out the wt in a minute, and see that it
makes no difference.) Suppose that we take a snapshot at the time ¢ = 0, although,
in fact, the picture is rotating with angular velocity w (Fig. 29-9). The projection
of A, along the horizontal axis is precisely 41 cos (wf + ¢,). Now at t = 0 the
second wave could be represented by another vector, A,, of length 4, and at an
angle @9, and also rotating. They are both rotating with the same angular velocity
w, and therefore the relative positions of the two are fixed. The system goes around
like a rigid body. The horizontal projection of Ay is 45 cos (wt + ¢3). But we
know from the theory of vectors that if we add the two vectors in the ordinary
way, by the parallelogram rule, and draw the resultant vector A, the x-component
of the resultant is the sum of the x-components of the other two vectors. That
solves our problem. It is easy to check that this gives the correct result for the
special case we treated above, where 4, = Ay = A. In this case, we see from
Fig. 29-9 that A, lies midway between A; and A, and makes an angle (¢ — ¢1)
with each. Therefore we see that A = 24 cos $(¢» — ¢,), as before. Also, as
we see from the triangle, the phase of Ag, as it goes around, is the average angle
of A; and A, when the two amplitudes are equal. Clearly, we can also solve for
the case where the amplitudes are not equal, just as easily. We can call that the
geometrical way of solving the problem.

There is still another way of solving the problem, and that is the analytical
way. That is, instead of having actually to draw a picture like Fig. 29-9, we can
write something down which says the same thing as the picture: instead of drawing
the vectors, we write a complex number to represent each of the vectors. The real
parts of the complex numbers are the actual physical quantities. So in our par-
ticular case the waves could be written in this way: A4,e"“!*¢0 [the real part of
this is 4, cos (wt + ¢;)] and A,e*“*+%2’. Now we can add the two:

R = Alei(wt-i-q&l) + Azei(wt+¢2) — (Aleidal + A2ei¢2)eiwt (2913)
or
R = A% 4 Ase™ = Ape™r. (29.14)
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This solves the problem that we wanted to solve, because it represents the result as
a complex number of magnitude Ar and phase ¢x.

To see how this method works, let us find the amplitude A which is the
“length” of R. To get the “length” of a complex quantity, we always multiply
the quantity by its complex conjugate, which gives the length squared. The
complex conjugate is the same expression, but with the sign of the i’s reversed.
Thus we have

A% = (41" + Are™) (A1 + A ™). (29.15)

In multiplying this out, we get 42 + A2 (here the e’s cancel), and for the cross
terms we have ) )
AlAz(ez(¢l—¢2) + et(¢2—¢1))'
Now . . . .
e? + e = cos§ + isin 8 + cos § — isin 6.

That is to say, € + e™* = 2cos 6. Our final result is therefore

AR = A} + A} + 24,42 cos (62 — ¢1). (29.16)

As we see, this agrees with the length of Ag in Fig. 29-9, using the rules of
trigonometry.

Thus the sum of the two effects has the intensity A7 we would get with one of
them alone, plus the intensity 45 we would get with the other one alone, plus a
correction. This correction we call the interference effect. 1t is really only the differ-
ence between what we get simply by adding the intensities, and what actually
happens. We call it interference whether it is positive or negative. (Interference in
ordinary language usually suggests opposition or hindrance, but in physics we
often do not use language the way it was originally designed!) If the interference
term is positive, we call that case constructive interference, horrible though it may
sound to anybody other than a physicist! The opposite case is called destructive
interference.

Now let us see how to apply our general formula (29.16) for the case of two
oscillators to the special situations which we have discussed qualitatively. To
apply this general formula, it is only necessary to find what phase difference,
¢1 — o2, exists between the signals arriving at a given point. (It depends only
on the phase difference, of course, and not on the phase itself.) So let us consider
the case where the two oscillators, of equal amplitude, are separated by some dis-
tance d and have an intrinsic relative phase «. (When one is at phase zero, the
phase of the other is «.) Then we ask what the intensity will be in some azimuth
direction 6 from the E-W line. [Note that this is not the same 8 as appears in
(29.1). We are torn between using an unconventional symbol like X, or the con-
ventional symbol 6 (Fig. 29-10).] The phase relationship is found by noting that
the difference in distance from P to the two oscillatorsis d sin 8, so that the phase
difference contribution from this is the number of wavelengths in d sin §, multiplied
by 2. (Those who are more sophisticated might want to multiply the wave number
k, which is the rate of change of phase with distance, by 4 sin 6, it is exactly the
same.) The phase difference due to the distance difference is thus 27d sin 8/A, but,
due to the timing of the oscillators, there is an additional phase a. So the phase
difference at arrival would be

¢ — ¢1 = a + 2mwdsin §/\. (29.17)

This takes care of all the cases. Thus all we have to do is substitute this expression
into (29.16) for the case 4, = A,, and we can calculate all the various results for
two antennas of equal intensity.

Now let us see what happens in our various cases. The reason we know, for
example, that the intensity is 2 at 30° in Fig. 29-5 is the following: the two oscilla-
tors are )\ apart, so at 30°,d sin 6 = A/4. Thus ¢ — ¢; = 2wA/4\ = 7/2, and
so the interference term is zero. (We are adding two vectors at 90°,) The result is
the hypotenuse of a 45° right-angle triangle, which is 1/2 times the unit amplitude;
squaring it, we get twice the intensity of one oscillator alone. All the other cases
can be worked out in this same way.
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Fig. 29-10. Two oscillators of equal
amplitude, with a phase difference a
between them.



